Abstract

Supplementary cementitious materials were incorporated into hydrogel-based internal curing agents to improve the hydration, microstructure, and ultimately strength of internally cured high-performance cement paste. Polyacrylamide composite hydrogel particles containing amorphous silica – either silica fume or nanosilica – and two different polymer network crosslink densities were synthesized and incorporated into cement paste. The presence of silica and low crosslink density increased the absorption capacity of the particles in pore solution. Micrographs of internally cured paste indicated a significant improvement in hydrogel-related void-filling ability and an increase in void size for low crosslink density particles containing silica. Compressive strength and electrical resistivity increased at later ages for paste samples containing particles with higher silica dosage. The relationship between extent of hydration, void size, and void-filling activity was found to strongly influence the paste's long-term strength and is thus an important structure-property relationship to consider when selecting hydrogels for internal curing purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.