Abstract

Chemical grain refining of high-silicon-content aluminium alloys, such as 355 alloy, is impaired by the high silicon content. One solution is the use of ultrasonic melt treatment (UST). This study sought to determine the duration of UST and type of horn (steel or Ti) required to achieve optimal grain refining in these alloys. Samples produced by conventional casting underwent UST for different times with steel and Ti horns and were compared with as-cast samples. For all the conditions studied, analysis of the samples showed that UST is an effective grain refining technique and yields satisfactory values of average grain size and primary and secondary dendrite arm spacing (λ1, λ2) as well as low porosity. The chemical composition of the samples was analysed by SEM–EDS mapping and point analysis to identify the intermetallic phases before and after UST. Best results were achieved after only 20 s of UST with a steel horn. UST for this length of time with a steel horn produced a homogeneous microstructure and possible homogeneous mechanical properties. Grain size was 160 µm; primary dendrite arm spacing, or dendrite cell size, was 130 µm; secondary arm spacing was approximately 18 µm; and Vickers hardness was approximately 95 HV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.