Abstract

In this work, we provide direct evidence of the fundamental mechanism through which saccharin, a standard industrial Ni electroplating additive, reduces stress in electrodeposited Ni. This was accomplished using real-time in situ stress measurements taken during through-mask electrodeposition of Ni films from a bath where the saccharin concentration was varied. This technique facilitated the direct measure of the effect of saccharin on the stress created at the Ni island boundaries. We demonstrated that increased saccharin concentration in a Ni–sulfamate-based bath resulted in a systematic reduction in the tensile grain-boundary coalescence stress. Based on this and ex situ S concentration measurements of the Ni films, we propose that the reduction in tensile stress was the result of a reduction in the grain-boundary energy due to S incorporation at the island boundaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.