Abstract

A simple, cost-effective, two-step method was proposed for preparing single-phase SnO polycrystalline thin films on quartz. X-ray diffraction (XRD) analysis demonstrated that the annealed films were consisted of polycrystalline alpha-SnO phase without preferred orientation, and chemical composition analysis of the single phase in nature was analyzed using X-ray photoelectron spectroscopy (XPS). Transmittance spectra in UV-vis-IR range indicated that the average transmittance of both the as-deposited and the annealed SnO thin films was up to 70%. The optical band gap decreased from 3.20 to 2.77 eV after the annealing process, which was attributed to the crystalline size related quantum size effect. Photoluminescence (PL) spectrum of the annealed film showed only a weak peak at 585 nm, and no intrinsic optical transition emission was observed. Moreover, the p-type conductivity of SnO film was confirmed through Hall effect measurement, with Hall mobility of 1.4 cm(2) V(-1) s(-1) and hole concentration of 2.8 x 10(16) cm(-3).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call