Abstract

Additive manufacturing (AM) promises rapid development cycles and fabrication of ready-to-use, geometrically-complex parts. The metallic parts produced by AM often contain highly non-equilibrium microstructures, e.g. chemical microsegregation and residual dislocation networks. While such microstructures can enhance some material properties, they are often undesirable. Many AM parts are thus heat-treated after fabrication, a process that significantly slows production. This study investigated if electropulsing, the process of sending high-current-density electrical pulses through a metallic part, could be used to modify the microstructures of AM 316 L stainless steel (SS) and AlSi10Mg parts fabricated by selective laser melting (SLM) more rapidly than thermal annealing. Electropulsing has shown promise as a rapid postprocessing method for materials fabricated using conventional methods, e.g. casting and rolling, but has never been applied to AM materials. For both the materials used in this study, as-fabricated SLM parts contained significant chemical heterogeneity, either chemical microsegregation (316 L SS) or a cellular interdendritic phase (AlSi10Mg). In both cases, annealing times on the order of hours at high homologous temperatures are necessary for homogenization. Using electropulsing, chemical microsegregation was eliminated in 316 L SS samples after 10, 16 ms electrical pulses. In AlSi10Mg parts, electropulsing produced spheroidized Si-rich particles after as few as 15, 16 ms electrical pulses with a corresponding increase in ductility. This study demonstrated that electropulsing can be used to modify the microstructures of AM metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.