Abstract

In this article, based on the theory of micromagnetism, a microstructural model of the behavior of the Heusler alloy in a magnetic field is constructed. The dynamics of the magnetic process is described by the Landau–Lifshitz–Gilbert equation. Using the Galerkin procedure, variational equations corresponding to the differential relations of the magnetic problem are written out. For numerical simulation, we consider the problem of magnetization of a Ni2MnGa alloy polytwin crystals, each grain of which is a twinned variant of martensite and has pronounced anisotropic properties. First, we consider the process of magnetization of a single grain, when an external magnetic field is applied at different angles to the anisotropy axes of twinned variants, and then, based on the results obtained, we plot magnetization curves for various (isotropic and texture-oriented) polycrystalline samples. This paper does not consider the process of detwinning, which can occur in such a material during the magnetization at a sufficiently high external field strength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call