Abstract
ABSTRACTA dislocation-density based crystalline plasticity, a finite viscoelasticity, and a nonlinear finite-element formulation were used to study the high strain-rate failure of energetic crystalline aggregates. The energetic crystals of RDX (cyclotrimethylene trinitramine) with a polymer binder were subjected to high strain-rate tensile loading, and the predictions indicate that high localized stresses and stress gradients develop due to mismatches along crystalline-crystalline and crystalline-amorphous interfaces. These high-stress interfaces are sites for crack nucleation and propagation, and the predictions are used to show how the cracks nucleate and propagate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.