Abstract

In this study, a triple-layer thermal barrier coating (TBC) of Cu-6Sn/NiCrAlY/YSZ was deposited onto a carbon-fiber reinforced polyimide matrix composite. Effects of different thicknesses of YSZ ceramic top coat and NiCrAlY intermediate layer on microstructural, mechanical and thermal shock properties of the coated samples were examined. The results revealed that the TBC systems with up to 300µm top coat thicknesses have clean and adhesive coating/substrate interfaces whereas cracks exist along coating/substrate interface of the TBC system with 400µm thick YSZ. Tensile adhesion test (TAT) indicated that adhesion strength values of the coated samples are inversely proportional to the ceramic top coat thickness. Contrarily, thermal shock resistance of the coated samples enhanced with increase in thickness of the ceramic coating. Investigation of the TBCs with different thicknesses of NiCrAlY and 300µm thick YSZ layers revealed that the TBC system with 100µm thick NiCrAlY layer exhibited the best adhesion strength and thermal shock resistance. It was inferred that thermal mismatch stresses and oxidation of the bond coats were the main factors causing failure in the thermal shock test.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.