Abstract

A suitable microstructure for thixoforming consists of spheroidal grains in a liquid matrix. In order to achieve this, some processing routes have been established. In this study, microstructural evolution of XW-42 and AISI M2 steels via direct partial remelting from the as-annealed condition was examined. Both steels were found to possess certain types of carbides that dissolved when subjected to heating inside the semi-solid zones. The types of carbides were MC-M6C for AISI M2 steel (fully dissolved between 1280 and 1300 °C) and M7C3 for XW-42 steel (fully dissolved between 1250 and 1270 °C). The dissolution of these grain boundary carbides during partial remelting helps with the grain spheroidisation and also with providing grain lubrication for the forming process through solid–liquid particle contact. In addition, solid–solid contacts were also observed (in 2D as well as 3D microstructural observation) and considered useful to provide structural integrity prior to forming. However, these contacts also must also be weak enough to be sheared easily. Compression test results for AISI M2 steel showed that thixotropic behaviour and complete mould filling were observed starting from 35 liquid percent. The same behaviour is also expected to occur for XW-42 steel due to its similarity in microstructural evolution with AISI M2 steel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call