Abstract

Hydrolysis across tiny spray droplet allows a facile one step synthesis of interesting sub-micrometric structures owing to the large available surface area unlike bulk hydrolysis. In the present work, it has been demonstrated that titania precursor concentration plays a significant role in effecting morphological transformation during spray hydrolysis. While hollow microspheres are formed primarily at low precursor concentration, fractal like grains, having two levels of hierarchy, result at high precursor concentration. Mesoscopic structure of these spray hydrolyzed grains has been investigated by ultra small-angle neutron scattering, small-angle X-ray scattering and scanning electron microscopy. Thermal evolution of initial amorphous phase of titania into crystalline rutile phase, through intermediate anatase and brookite phases, is followed by high temperature X-ray diffraction. A plausible mechanism has been elucidated for the observed morphological transition with variation of precursor concentration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.