Abstract

The low‐temperature autoclave aging behavior of zirconia‐toughened alumina composites processed by a classical powder mixing processing route was analyzed using atomic force microscopy (AFM), scanning electron microscopy, and X‐ray diffraction (XRD). The transformation was evaluated in terms of nucleation and growth, assessed by XRD. The time–temperature equivalency of the transformation was used to measure an apparent activation energy of the nucleation stage of the transformation of 78 kJ/mol. The microstructural features influencing the transformation were identified, and the influence of the alumina matrix on the transformation was investigated. Transformation progression grain by grain was observed by AFM. Transformation does not only occur in zirconia agglomerates but also in isolated zirconia grains. The matrix could partially inhibit the transformation. This behavior could be rationalized considering the constraining effect of the alumina matrix, shape strain accommodation arguments, and microstructural homogeneity effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.