Abstract

The effect of Hf addition on microstructures, phase relationships, microhardness, and magnetic properties of Fe50Al50−nHfn alloys for n = 1, 3, 5, 7, and 9 at. pct has been investigated. At all investigated compositions, the ternary intermetallic HfFe6Al6τ1 phase forms due to the limited solid solubility of Hf in FeAl phase and tends to develop a eutectic phase mixture with the Fe-Al-based phase. The Hf concentration of the eutectic composition is found to be 7 at. pct from the microstructural examinations and the eutectic phase transition temperature is determined as 1521 K (1248 °C) independent of Hf amount by differential scanning calorimetry measurements. Furthermore, the enthalpies and activation energies (based on Kissinger and Ozawa methods) of eutectic phase transitions are reported. The minimum activation energy is calculated for the fully eutectic composition. Moreover, variation of the microhardness of Fe-Al-based alloys as a function of the Hf content is investigated, and its dependence on the thermal history of the alloys is explained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.