Abstract

A study of the microstructure of additively manufactured Alloy 718 was performed in order to better understand the parameters that have an influence on the fatigue properties of the material. The specimens were manufactured using two powder bed fusion techniques – Electron Beam Melting (EBM) and Selective Laser Melting (SLM). Four point bending fatigue tests were performed at room temperature with a stress ratio of R = 0.1 and 20 Hz frequency, on material that was either in hot isostatically pressed (HIP) and solution treated and aged (STA) condition or in STA condition without a prior HIP treatment. The grains in the SLM material in the HIP + STA condition have grown considerably both in the hatch and the contour regions; EBM material, in contrast, shows grain growth only in the contour region. Fractographic analysis of the specimens in HIP + STA condition showed a faceted appearance while the specimens in STA condition showed a more planar crack appearance. The crack propagation occurred in a transgranular mode and it was found that precipitates such as NbC, TiN or δ-phase, when present, did not affect the crack path. The areas with larger grains corresponded to the faceted appearance of the fracture surface. This could be attributed to the plastic zone ahead of the crack tip being confined within one grain, in case of the larger grains, which promotes single shear crack growth mode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call