Abstract

The characterization of high quality InP on GaAs (001) fabricated by molecular beam epitaxy using a two-step growth method involving hydrogenation during growth is reported. Electron diffraction and high-resolution transmission electron microscopy confirm that ∼2 μm thick InP epilayers on GaAs are heteroepitaxial and strain relaxed. Stacking faults and threading dislocations are mostly confined near the InP/GaAs interface and their densities decrease monotonically toward the InP surface. Additionally, rapid-thermal annealing following growth is found to result in a marked reduction in the number of dislocations and the disappearance of planar defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.