Abstract

The microstructural evolution during continuous heating experiments has been studied for two C-Mn steels with carbon contents in the range 0.35 to 0.45 wt pct using optical microscopy, scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). It is shown that the formation of the austenitic phase is possible in pearlite as well as in ferrite regions. Thus, a considerable overlap in time of ferrite-to-austenite and pearlite-to-austenite transformations is likely to occur. Another observation that was made during the experiments is that, depending on the heating rate, the pearlite-to-austenite transformation can proceed in either one or two steps. At low heating rates (0.05 oC/s), ferrite and cementite plates transform simultaneously. At higher heating rates (20 oC/s), it is a two-step process: first ferrite within pearlite grains transforms to austenite and then the dissolution of the cementite lamellae takes place. Several types of growth morphologies were observed during the experiments. The formation of a finger-type austenite morphology was noticed only for low and intermediate heating rates (0.05 oC/s and 20 oC/s), but not for the heating rate of 300 oC/s. The formation of this fingertype austenite occurs on pearlite-ferrite grain boundaries and coincides with the direction of cementite plates. The carbon inhomogeneities in the microstructure affect the formation of martensitic/bainitic structures on cooling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call