Abstract

The fatigue behavior of the nickel-base superalloy René 88 DT has been investigated at room temperature with fully reversed loading in an ultrasonic fatigue apparatus operating at a frequency close to 20kHz. A characterization protocol based on the electron backscatter diffraction technique has been developed to identify the combination of microstructural features within crack initiation sites and surrounding neighborhoods that leads to the transition from initiation to early small crack growth. Surface grains that were more than three times the average grain size, that were favorably oriented for cyclic slip localization and that also contained Σ3 twin boundaries inclined to the loading axis were most favorable for fatigue crack initiation. Fatigue cracks subsequently grew in grain clusters within which grains are misoriented by less than 20° relative to the initiation grains. More highly misoriented neighboring grains resulted in crack arrest. The material characteristics that promote crack initiation and small crack growth exist only at the extreme tails of the microstructural distributions. The implications for modeling of fatigue life and fatigue life variability are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.