Abstract

Open-cell aluminium foams can be produced with the structural replication of dimensional accuracy from polymeric foam patterns through a pressure infiltration casting process. The strength of open-cell foam is much less than that of the closed-cell counterpart, and thereby subjects to mainly functional applications. An improvement in mechanical properties of the foams can be implemented with the addition of ceramic particles. In the present study, the composite foams were produced using AC3A alloy added with varying contents of SiC particles. The resultant foams have ceramic particles embedded in the alloy matrix and on the strut surface. Higher volume fraction of ceramic particles resulted in an increase in the compressive strength, energy absorption and microhardness of the foams. The improvement of these properties is due to the modification of the microstructure of the foams and the increased strength in the node and struts at which the ceramic particles reside.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.