Abstract

To investigate the microstructural evolution of wrought-nickel-based superalloy GH4169 from the original ingot to the finished product of manufacturing processes, different kinds of etchants and etching methods were used to show the fine precipitates and their morphologies. The obtained microstructures can vary in size, type, distribution, location, formation, and interactions of multiple phases, which were observed and analyzed by optical microscopy (OM), scanning electron microscopy (SEM), and an energy dispersive spectrometer (EDS). The dendrite segregation behavior of as-cast superalloy GH4169 was investigated. In addition, the microstructural evolution mechanism of second-phase particles during dynamic recrystallization was analyzed. This work sheds light on the evolution of the second-phase structure of nickel-based superalloys during the preparation process, providing guidance for process development and visual interpretation of the relationships between microstructure and properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call