Abstract

Slurry iron aluminide coatings are very resistant to steam oxidation at 600-650º C. These coatings can be used to protect new generation Ultra Super Critical (USC) steam power plant ferritic/martensitic steel components. The microstructure of the initially deposited coating changes as a function of time, mainly due to coating-substrate interdiffusion, going from mostly Fe2Al5 to FeAl, causing the precipitation of AlN in those substrates containing a minimum content of N and moreover, developing Kirkendall porosity at the coating-substrate interface. Steam oxidation at 650º C causes the formation of a protective thin layer of hexagonal χ-Al2O3 phase along with some α- and γ-Al2O3 after the first few hours of exposure. However, despite the relatively low temperature, and after several thousands hours the protective layer was mostly composed of α-Al2O3. A study of the evolution of the microstructure of slurry aluminide coatings deposited on P92 and exposed to steam at 650º C has been carried out by scanning and transmission electron microscopy and X ray diffraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.