Abstract

Ceramic-metallic (cermet) materials show promise for use in nuclear thermal propulsion applications due to attractive thermophysical properties including high temperature stability and high thermal conductivity. In this work, molybdenum-uranium dioxide (Mo-UO2) cermet fuel elements were fabricated by means of spark plasma sintering (SPS) and were subsequently exposed to hydrogen at high temperatures (2500 K). Mo-UO2 samples pre- and post-exposure were characterized by means of optical microscopy, scanning electron microscopy, and X-ray diffraction (XRD). Microscopy analyses of the as-produced material displayed microscopic cracking on the interior of the spherical UO2 fuel particles but confirmed that the fuel particles were fully encapsulated in the Mo matrix. The results further showed mass loss, macroscopic swelling, and cracking in the cermet samples which occurred during high temperature hydrogen testing. Nanoscale swelling was evidenced by XRD in the Mo matrix and UO2 fuel structure due to the incorporation of defects and accompanied microstrain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call