Abstract

Raman spectroscopy traces the microstructural evolution of carbonaceous matter (CM) during artificial heating. Thermo-chemical reactivity and strength of blast furnace coke at 1100 °C is dependent on the graphitization state of the feed coke. A standard coke reactivity index (CRI) sample is composed of lumps, showing a high microstructural variability. The frequency distribution of the D-STA parameter estimated by the “Interactive Fitting of Raman Spectra” (IFORS) software suggests a positive correlation between degree of CM organization and CRI. Samples from the tuyere region of an operating blast furnace evidence graphitization of CM at temperatures higher than 1900 °C. IFORS parameters, calibrated by x-ray diffraction-based lattice dimensions and transmission electron microscopy data constrain a temperature gradient decreasing from the raceway to the deadman zone. The gradient controls a continuous variation of the petrographic coke texture. As an application, the IFORS method is able to map the graphitization zones in the hearth of a working blast furnace.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.