Abstract

This paper reports our detailed investigation of the microstructural evolution of Ge/Si(1 0 0) nanoscale islands grown by deposition of pure Ge onto Si(1 0 0) substrates using molecular beam epitaxy. Substrate temperatures during growth were varied in the range 400⩽ T⩽700°C, although we have mostly concentrated our attention here on studying samples grown at T=550°C, 650°C and 700°C. Atomic-force microscopy was first used ex situ to document the shape and size evolution of the Ge/Si(1 0 0) islands as a function of the growth conditions (Ge coverage, substrate temperature). A range of transmission electron microscopy techniques including energy-dispersive X-ray spectroscopy and electron energy-loss spectroscopy was then used to further investigate the local microstructure and composition of the islands. Substantial Si diffusion into the Ge islands was measured, and trenches extending well into the Si substrate were also observed at the bases of larger clusters grown with T⩾550°C. Plan-view imaging of selected samples using both bright-field and dark-field imaging modes identified the critical size for dislocation formation. Cross-sectional high-resolution imaging enabled the strain-relieving dislocations to be identified, and also confirmed the multi-facetted and often asymmetrical shapes of larger islands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.