Abstract
ABSTRACTA large softening of the shear modulus has been reported in metallic superlattices composed of insoluble bcc/fcc metals. In an attempt to understand this elastic anomaly, we have studied the microstructure of Fe/Cu bilayers as a function of the Fe thickness with transmission electron microscopy (TEM). Analysis of the moire fringes observed in plan-view TEM images revealed that the fee Fe structure epitaxially grows on the (001) Cu up to a thickness of 2.0 nm. At 2.3 nm, the bec Fe structure nucleates, accompanying lattice rotation around the growth direction with respect to the underlying fee structure. As the Fe thickness further increases, submicron polycrystalline grains formed. Based on these results, the microstructure of the metallic superlattices and its relation to the softening of the shear modulus will be discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.