Abstract

The microstructural evolution of AZ61 magnesium alloy during hot compression at various temperatures was investigated. The experimental results show that dynamic recrystallisation occurs over a wide temperature range. Grains can be greatly refined through dynamic recrystallisation. The mean size of the recrystallised grains increases with a decrease of temperature or value of Z (Zener – Hollomon parameter), while the reciprocal of the recrystallised grain size has a good linear relationship with the natural logarithm of the Z value, as well as the hyperbolic term of the flow stress. Basal and non-basal segments have been found in both recrystallised grains and primary grains, whereas dislocation pileups exist only in recrystallised grains when the temperature is lower than 673 K. The occurrence of twins is dependent on temperature and strain. When the strain increases, primary twins evolve into secondary twins. However, secondary twins grow with an increase of temperature; some secondary twins evolve into subgrains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.