Abstract
The microstructural evolution of a Ti–6Al–4V alloy during thermomechanical processing in the β-phase field was investigated using both experimental and modelling methods. The experimental results show that dynamic and/or metadynamic recrystallization occurred when the alloy was processed in the β-phase field. A model embedding fundamental metallurgical principles of dynamic recrystallization (DRX) within the cellular automaton (CA) method was able to simulate quantitatively and topographically the microstructural evolution and the flow stress–strain relationship during the thermomechanical processing. In the simulation, the dislocation density variation and the grain growth kinetics of each dynamically recrystallizing grain (R-grain) was calculated on the physical model of DRX, and the plastic flow curve was calculated directly from the dislocation density variation of the matrix grains and the R-grains. The equiaxed growth of R-grains was simulated using the CA method. The influence of strain rate and temperature on the microstructural evolution and the flow stress during dynamic recrystallization was studied, and the results compared with experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.