Abstract

This study details the microstructural evolution of a commercial hot-dip 11Al-3Mg-Zn-coated steel during austenitization. After 5 minutes of austenitization at 1173 K (900 °C), the ternary alloy coating transformed to consist of a nearly pure Zn as the major layer, a Fe-Al alloy layer at the interface, and a thin oxide overlay. The Fe-Al alloy layer effectively acted as the inhibition layer to prevent Fe from diffusing and reacting with Zn, which in turn retained the molten Zn layer and the integrity of the surface oxide layer. Moreover, the potential difference between the 11Al-3Mg-Zn coating and the steel substrate remained similar after austenitization, signifying the resulting coating kept its sacrificial protection capability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.