Abstract

Friction self-piercing riveting (F-SPR) is an emerging technique for low ductility materials joining, which creates a mechanical and solid-state hybrid joint with a semi-hollow rivet. The severe plastic deformation of work materials and localized elevated temperatures during the F-SPR process yield complex and heterogeneous microstructures. The cut-off action of the work materials by the rivet further complicates the material flow during joint formation. This study employed the F-SPR process to join AA7075-T6 aluminum alloy sheets and systematically investigated the microstructural evolutions using electron backscatter diffraction (EBSD) techniques. The results suggested that as the base material approached the rivet, grains were deformed and recrystallized, forming two distinct fine grain zones (FGZs) surrounding the rivet and in the rivet cavity, respectively. Solid-state bonding of aluminum sheets occurred in the FGZs. The formation of FGZ outside the rivet is due to dynamic recrystallization (DRX) triggered by the sliding-to-sticking transition at the rivet/sheet interface. The FGZ in the rivet cavity was caused by the rotation of the trapped aluminum, which created a sticking affected zone at the trapped aluminum/lower sheet interface and led to DRX. Strain rate gradient in the trapped aluminum drove the further expansion of the sticking affected zone and resulted in grain refinement in a larger span.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call