Abstract

Microstructural evolution of adiabatic shear bands originated due to high strain, high strain rate deformation in Ta and Ta–W alloys has been examined. Tests were performed using a specially designed stepped specimen in a Hopkinson bar. Upon completion of the deformation, the region is cooled to below one half of the temperature achieved during adiabatic heating in less than one millisecond. Microstructural characterization of the shear bands was performed using optical microscopy as well as scanning and transmission electron microscopy. No evidence of recrystallization within the shear bands could be found. This is in contradiction with several recent reports, which claim that recrystallization may take place at these stringent time and temperature conditions. These studies, however, do not take into account the kinetics of boundary refinement processes, which are a distinctive characteristic of a recrystallized microstructure. It will be shown that the absence of recrystallization in Ta and Ta–W adiabatic shear bands can be predicted by a progressive subgrain misorientation (PriSM) recrystallization model, applied successfully in previous studies to predict the microstructure evolution in copper adiabatic shear bands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call