Abstract

The paper deals in depth with characterizing bead-on-plate welds on EN-GJS-500-14 base metal, utilizing two filler metals: a pure Ni wire and a NiFe wire containing 45 wt pct Ni. The welds were conducted using the same heat input to ensure comparability in microstructure analysis. The microstructural observations were carried out using optical and scanning electron microscopies, X-ray tomography, X-ray diffraction analysis, and microhardness testing. Thermodynamic simulations using the non-equilibrium Scheil solidification model provide insights into the solidification process and the underlying metallurgical factors associated with the observed microstructural evolution. The observations revealed that the pure Ni wire deposited a softer fusion zone with graphite precipitation, while cementite precipitated in the fusion zone of NiFe alloy. The formation of martensite structures with different morphologies was the predominant microstructural evolution in the heat-affected zone of both welds. The partially melted zone of the pure Ni weld is narrower than the NiFe weld because more diffusion of Ni avoids widening the brittle structures in the partially melted zone. An unmixed zone in the form of a peninsula was exclusively observed in the fusion zone of the NiFe weld because of inadequate diffusion of Ni into the liquified materials along the fusion boundary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.