Abstract
Transient-liquid-phase (TLP) bonding was used to fabricate a Haynes 230 Ni-base superalloy/sapphire fiber composite for high-temperature applications. Boron was used as a melting-point depressant for the Ni, to aid superalloy infiltration of the fibers. Preliminary study of the composite indicated an incomplete TLP bonding cycle. Therefore, microstructural and microchemical analyses were carried out to determine the TLP bonding mechanism. It was found that the TLP process did not occur under local thermodynamic equilibrium conditions at the solid/liquid interfaces, contrary to the primary assumption of conventional models, so a modified model for TLP bonding is proposed. The main differences between the proposed and the conventional models are: (a) the concentration of the melting-point depressant increases with time during isothermal solidification, (b) extensive boride segregation at γ grain boundaries and boride precipitation occurs within γ grains adjacent to the interlayer in the initial composite assembly, (c) because of the relatively high boron concentration in the interlayer, the TLP bonding cycle was incomplete, resulting in residual-liquid borides. To achieve ideal TLP bonding, four modifications are recommended: (i) use less boron, (ii) use finer sapphire fibers, (iii) create smaller initial grain sizes in the γ matrix and (iv) increase the homogenization time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.