Abstract

The boundary misorientations in an Al-1OMg-O.1Zr (wt%) alloy, thermomechanically processed by rolling at 573 K (300°C), were determined both in annealed and in superplastically deformed conditions. A high initial dislocation density in as-rolled material, which obscured any underlying structure, rapidly transformed into a well-defined structure containing boundaries. After annealing for 600 s at 573K, boundaries with misorientations of 1–5° were observed. With further annealing (3000 s), misorientations did not change appreciably and were measured to be 2–7°. Such time represents that necessary to equilibrate at 573K prior to tension testing at that temperature. The material exhibits superplasticity from the onset of deformation and after 100% strain, misorientations were observed to increase to 20–30°. It was concluded that boundaries of such initial misorientations can support superplastic deformation mechanisms including grain boundary sliding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call