Abstract

AbstractIn this study, the morphological evolution and sintering properties of the palygorskite nanofibers were studied along with the increase of temperature, using raw palygorskite as materials. The palygorskite powder was calcined at different temperatures in the range of 100°C‐1200°C, and the microstructural evolution of the palygorskite nanofibers was investigated by thermogravimetric and differential thermal analysis (TG‐DTA), X‐ray diffraction (XRD), scanning electron microscopy (SEM), and high‐resolution transmission electron microscope (HRTEM). Furthermore, the palygorskite powder was shaped to bars by dry pressing and sintered from 700°C to 1200°C. The properties of the sintered palygorskite were characterized by bending strength, mercury intrusion porosimeter (MIP), and stepwise isothermal dilatometry (SID). The results showed that the morphology of palygorskite nanofibers maintained unchanged till 1000°C. The palygorskite nanofibers molted to bind each other and formed a solid interwoven network structure at 1100°C. Correspondingly, it was shown from the sharply decrease of the sintered palygorskite porosity from 45.46% at 1000°C to 1.82% at 1100°C that the dense sintering of palygorskite started at 1100°C. With the sintering proceeding, some closed micropores fused each other to form bigger opening pores, resulting in a slight increase of porosity at 1200°C. However, the pore size distribution got more uniform and the density of the sintered body increased. So the bending strength of the sintered body reached the maximum of 176.67 Mpa and finally the main crystalline phases of the sintered sample changed to quartz, enstatite, and kyanite. The sintering activation energy of the palygorskite was measured by means of SID with a value of 906.46 kJ·mol−1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call