Abstract

This paper deals with phase constitutions, microstructural evolutions, and mechanical properties of Nb–16Si–xFe in-situ composites (where x = 2, 4, 6 at.%, referred as to 2Fe, 4Fe and 6Fe alloys, hereafter) prepared by arc-melting. It is found that with additions of Fe, Nb4FeSi silicide arises and microstructures of as-cast samples are consisted of dendritic-like NbSS phase, Nb3Si block, and Nb4FeSi matrix in the 2Fe and 4Fe alloys, and of the dendritic-like NbSS phase and Nb4FeSi matrix in the 6Fe alloy. When heat-treated at 1350 °C for 100 h, part of the Nb3Si phase decomposes in the 2Fe and 4Fe alloys, and the 6Fe alloy shows no change in microstructure as compared with the as-cast one. The Nb4FeSi silicide is found to be brittle, its fracture toughness and elastic modulus are first obtained, having values about 1.22 MPa m1/2, and 310 GPa, respectively. The fracture toughness of the bulk as-cast and heat-treated Nb–16Si–xFe samples are changed slightly by the Fe additions, which is in a range of 9.03–10.19 MPa m1/2. It is interesting that at room temperature, strength is improved by the Fe additions, whereas at 1250 °C and 1350 °C the strength decreases. As the Fe content increased from 2 at.% to 6 at.%, for example, the 0.2% yield strength increases from 1410 MPa to 1580 MPa at room temperature, decreases from 479 MPa to 385 MPa at 1250 °C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call