Abstract

Microstructural evolution, hardness, and shear strength of the cast plates of GZ31 magnesium alloy were investigated after friction stir processing (FSP). Due to severe plastic deformation and dynamic recrystallization, FSP breaks the dendrites and results in a fine homogenous structure in the stirred zone (SZ) having average grain sizes of about 4.0 and 2.5 μm in the one and two-pass FSPed plates, respectively. As a novel approach, strength of the processed plates was examined by shear punch testing in three regions of the SZ on the surface layer, namely, center line (CL), retreating side (RS), and advancing side (AS). FSP showed great potential in the enhancement of SZ ultimate shear strength from 114 to about 152 and 155 MPa in the one and two-pass FSPed materials, respectively. The same trend was observed in hardness values of the SZ, where the average hardness of the base material increased from 41 to 60 and 68 Vickers after one and two passes of FSP, respectively. The variations in the shear strength of the CL, RS, and AS zones of the SZ were about 5% for the first pass of FSP, the effect which was decreased to less than 2% after two passes of FSP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.