Abstract

Abstract Microstructural evolution and compressive properties of an extruded Mg-2Dy-0.5Zn (at.%) alloy sheet at 350°C were investigated. As the compressive strain increased, the volume fraction of dynamic recrystallization increased, the fine lamellar 14H long period stacking ordered phase precipitated in the dynamic recrystallization grain, and the Mg12ZnDy phase with an 18R long period stacking ordered structure gradually bent. These secondary phases not only acted as nucleation sites to promote dynamic recrystallization but also restrained grain growth by inhibiting dislocation movement and grain boundary sliding. The compressive yield strength, ultimate compressive strength, and compressive strain of the alloy sheet were 161 MPa, 212 MPa, and 12.4% at 350°C, respectively. The high compressive strengths were mainly attributed to grain refinement, kink band strengthening of the 18R long period stacking ordered phase and precipitation strengthening of the fine lamellar 14H long period stacking ordered phase in the dynamic recrystallization grain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.