Abstract

ABSTRACT Grain-growth kinetics of high-entropy, single-phase, face-centred cubic (FCC) Al0.2CoCrFeNi alloy was studied by isothermal annealing over a wide temperature range for different time intervals. Both optical and EBSD studies show a significant amount of annealing twins. Data were analysed using classical grain-growth models and the activation energy was estimated using the Arrhenius type equation. The grain-growth exponent was found to be n = 3 and the measured activation energy for grain growth was 190 ± 15 kJ mol−1. Significant resistance to grain growth was observed at 1100°C. Microstructural characterisation tools like EBSD, along with nanoindentation, was used to understand the observed behaviour.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call