Abstract

Hot compression tests were conducted in a temperature range of 1173 K to 1323 K (900 °C to 1050 °C) and strain rates of 0.001 seconds−1 to 1 second−1 to investigate the hot deformation behavior of the austenitic stainless steel type 1.4563. The results showed that hot deformation at low temperatures, i.e., 1173 K to 1223 K (900 °C to 950°C), and at low and medium strain rates, i.e., 0.001 seconds−1 to 0.1 seconds−1, results in the dynamic formation of worm-like precipitates on existing grain boundaries. This in turn led to the restriction or even inhibition of dynamic recrystallization. However, at higher temperatures and strain rates when either the time frame for dynamic precipitation was too short or the driving force was low, dynamic recrystallization occurred readily. Furthermore, at low strain rates and high temperatures, there was no sign of particles, but the interactions between solute atoms and mobile dislocations made the flow curves serrated. The strain rate sensitivity was determined and found to change from 0.1 to 0.16 for a temperature increase from 1173 K to 1323 K (900 °C to 1050 °C). The variations of mean flow stress with strain rate and temperature were analyzed. The calculated apparent activation energy for the material was approximately 406 kJ/mol. The hyperbolic sine function correlated the Zener-Hollomon parameter and flow stress successfully at intermediate stress levels. However, at low levels of flow stress a power-law equation and at high stresses an exponential equation well fitted the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.