Abstract
The effect of deformation behavior on the in vitro corrosion rate of Mg–2Zn–0.5Nd alloy was investigated experimentally after uniaxial tensile and compressive stress. The microstructure and texture were characterized using electron backscattered diffraction and X-ray diffraction, while potentiodynamic polarization and immersion tests were used to investigate the corrosion response after deformation. The result reveals that applied compressive stress has more dominant effect on the corrosion rate of Mg–2Zn–0.5Nd alloy as compared to tensile stress. Both tensile and compressive strains introduce dislocation slip and deformation twins in the alloy, thereby accelerating the corrosion rate due to the increased stress corrosion related to dislocation slips and deformation twins. The {10 $$\bar{1}$$ 2} tension twinning and prismatic slip were the major contributors to tensile deformation while basal slip, and {10 $$\bar{1}$$ 2} tension twin were obtainable during compressive deformation. The twinning activity after deformation increases with the plastic strain and this correlates with the degradation rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.