Abstract

Microstructural evolution and age-hardening behavior of Mg–2Dy–6Zn (at%) alloy during solid-solution and aging treatment were investigated. The microstructure of as-cast alloy is composed of α-Mg, Mg3DyZn6 (I) phase, Mg3Dy2Zn3 (W) phase, Mg(Zn,Dy) phase and a small amount of Mg0.97Zn0.03 phases. After solid-solution treatment (480 °C, 12 h), all the I phases and most W phases dissolve into α-Mg matrix and the remainder W phases transform into Mg(Dy,Zn) phase and MgDy3 phase. During aging treatment, I phase and small amounts of W phases co-precipitate from α-Mg matrix, respectively. The alloy exhibits a peak hardness of HV 77.5 at 200 °C for 8 h. The excellent age-hardening behavior of alloy is mainly attributed to the co-precipitation strengthening of I and W phases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call