Abstract

There have been remarkable improvements in the research field of magnesium over the last few decades, especially in the magnesium metal matrix composite in which micro and nanoparticles are used as reinforcement. The dispersion phase of nanoparticles shows a better microstructural morphology than pure magnesium. The magnesium metal matrix nanocomposite shows improved strength with a balance of plasticity as compared to the traditional magnesium metal matrix composite. In this research, Nb2O5 (0 wt.%, 3 wt.%, and 6 wt.%) nanoparticles were used to reinforce AZ31 with the stir casting method, followed by heat treatment, and finally, an investigation was conducted using microstructural analysis. Factors such as the degree of crystallinity, crystallite size, and dislocation density are affected by the concentration of Nb2O5 and heat treatment. With the compositional increase in Nb2O5 weight percentage, the grain size decreases up to 3% Nb2O5 and then increases gradually. The SEM image analysis showed a grain size reduction of up to 3% Nb2O5 and fracture morphology changed from basal slip to a mixture of basal slip and adiabatic shear band.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.