Abstract

Nanopowders and thin films of (СeO2)1-x(Y2O3)x composition (x = 0.10, 0.15 and 0.20) were obtained by the sol-gel process, using hydrolytically active complexes of the metal alkoxoacetylacetonate class [M(C5H7O2)3-y(C5H11Oi)y] (M = Ce3+ and Y3+) as precursors. The impact of the chemical composition and crystallization conditions on the microstructure, electrophysical and chemosensory characteristics of the obtained planar-type solid electrolytes was studied. The prospects of the thin-film nanostructures obtained as receptor components of resistive oxygen sensors, as well as of electrolytes of planar-type intermediate-temperature solid oxide fuel cells (SOFC) have been shown. It has been found that (CeO2)0.90(Y2O3)0.10 thin films demonstrate the maximum values of electrical conductivity (550 °C) and the highest sensory response when detecting oxygen (concentration range 1–20%, operating temperature range 300–450 °C).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.