Abstract

The recent first-principle model shows that heat conduction in nanofluids can be diffusion-dominant or thermal-wave-dominant depending on their microscale physics (structures, properties and activities). As the first attempt of quantifying when and to what extent thermal waves become important, we numerically examine effects of particle–fluid conductivity ratio, particle shape, volume fraction and nondimensional particle–fluid interfacial area in the unit-cell on macroscale thermal properties for nanofluids consisting of in-line arrays of perfectly dispersed two-dimensional circular, square and hollow particles, respectively. In simple and perfectly dispersed nanofluids, the heat conduction is diffusion-dominant so the effective thermal conductivity can be predicted adequately by the mixture rule with the effect of particle shape and particle–fluid conductivity ratio incorporated into its empirical parameter. Thermal waves appear more likely at smaller particle–fluid conductivity ratio (< 1) and lower particle-volume-fraction, which agrees with the experimentally observed significant conductivity enhancement in the oil-in-water emulsion. The computed thermal conductivity predicts some experimental data in the literature very well and shows the sensitivity to the nondimensional particle–fluid interfacial area in the unit-cell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.