Abstract

Continuous unidirectional SiCf/TC17 composite has been fabricated by hot isostatic pressing (HIP). After consolidation, the TC17 canning (the unreinforced ambient portion of the specimen) showed an equiaxed microstructure, whereas the matrix of SiCf/TC17 composite (deposited on the continuous SiC fibers by magnetron sputtering) exhibited a typical lamellar structure. In this work, the heat treatments under different condition, XRD, SEM and WDS have been employed to characterize and analyze the microstructural difference. The results indicated that the difference in β transus temperature (Tβ) between the canning and matrix of TC17 alloy induced the microstructural diversity. The introduction of C element (an intensive α stabilizing element) into the matrix alloy may be ascribed to the diffusion of carbon layer at the surface of SiC fiber. As a result, Tβ of matrix TC17 alloy increased to above 1000 °C, much higher than that of the canning TC17 alloy (890 °C). The investigation of microstructure difference reveals the microstructure evolution in SiCf/TC17 composite, which can provide an effective reference for following processing design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.