Abstract

Microstructural development in chemically vapor-deposited (CVD) high-purity beta-SiC during neutron and self-ion irradiation at elevated temperatures was studied. The CVD SiC samples were examined by transmission electron microscopy following neutron irradiation to 4.5–7.7 × 10 25 n/m 2 ( E > 0.1 MeV) at 300 and 800 °C and 5.1 MeV Si 2+ ion irradiation up to ∼200 dpa at 600–1400 °C. The evolution of various irradiation-produced defects including black spot defects, dislocation loops, network dislocations, and cavities was characterized as a function of irradiation temperature and fluence. It was demonstrated that the black spot defects and small dislocation loops continue to dominate at relatively low temperatures (<∼800 °C), whereas they grow into Frank faulted loops and finally develop into dislocation networks at a higher temperature (1400 °C). Substantial cavity formation on grain boundaries and stacking faults was confirmed after ion irradiation at 1400 °C. These observations were discussed in relation with the known irradiation phenomena in SiC, such as low temperature swelling and cavity swelling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.