Abstract
In this study, FeMnAlNi shape memory alloys are demonstrated to experience room temperature (RT) aging, which manifests itself as a gradual increase in critical transformation stress with time when the sample is kept in a stress-free condition. This effect is sufficient to create superelasticity in the solution treated condition, which does not normally show superelasticity soon after heat treatment. This phenomenon is due to the nucleation and coarsening of nanoprecipitates at room temperature despite the high melting point of the alloy. RT aging also influenced precipitation hardened FeMnAlNi samples by causing an increase in stress hysteresis and hardening rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.