Abstract

Various investigations have been attempted to improve the low temperature ductility of Nb-silicides by microstructural control while they show superior high temperature strength. Present authors have focused on the microstructure evolution through the eutectic and eutectoid reactions in Nb-rich portion of Nb-Si binary system, and with small amounts of additives (Zr or Mg) alloys large Nb grains with fine silicide (α-Nb 5 Si 3 ) particles have been obtained, which is attractive for high temperature use. For further understanding of this phenomenon, the present study has two objectives; one is to apply the advanced solidification technique for further microstructure control, and the other is to investigate the effect of co-existence of Zr and trace amount of Mg on the microstructure evolution during the eutectoid reaction in terms of the interfacial energy between phases. EBSD analysis revealed that uni-directionally solidified alloy show the same crystallographic orientation relationship (O.R.) between Nb and α-Nb 5 Si 3 with that in arc-melted alloy having the same composition. On the other hand, Mg-doped alloy containing Zr shows an O.R. which was not observed in previous works. This implies that Mg doping is effective to control the interfacial energy between Nb and α-Nb 5 Si 3 even in Nb-Si-Zr alloys. Two-step heat-treatment is found to be effective to obtain finer microstructure, and a further investigation on the controlling factors of eutectoid decomposition will provide a proper route to well-controlled microstructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.