Abstract

A Si-based slurry containing Si particles covered with Y2O3 and MgO nanoparticles (NPs) has been successfully prepared and then applied to shape Si-based green compacts for the fabrication of silicon nitride (Si3N4) ceramics via post-reaction sintering. It was found that Y2O3 and MgO NPs modified with polyethyleneimine-oleic acid complex (PEI-OA) could be effectively attached to Si particles by simple mixing in dense toluene slurry. Field emission scanning electron microscopy observations confirmed the attachment of PEI-OA-modified sintering aids to Si particles without forming large NP agglomerates. The adsorption of the PEI-OA-modified sintering aids and PEI-OA on the surface of Si particles drastically improved the stability of the Si-based toluene slurry, which was subsequently molded through wet vacuum casting and dewaxed to fabricate a Si-based green body. The obtained green body was nitrided at 1375 °C for 4 h at a N2 pressure of 0.15 MPa and further sintered at 1850 °C for 2 h at a N2 pressure of 0.9 MPa. The adsorption of sintering aid particles on the Si surface reduced the number of contact points between Si particles in the green body, which effectively suppressed the Si melting process during nitriding and improved the characteristics of the produced nitride body such as the degree of nitriding and α/(α+β) ratio of Si3N4, leading to the successful fabrication of high-density Si3N4 ceramics during the subsequent densification step.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.