Abstract
Microstructural and magnetic characterization were undertaken on high-rate, high-temperature grown YBa2Cu3O7–δ (YBCO) films. The films were of approximately 1 μm thickness and were grown by pulsed laser deposition on (100) SrTiO3 using a high-power industrial laser at growth temperatures between 750 °C and 870 °C and at growth rates of up to 4 μm/min. Two YBCO layers with different c-lattice parameters were observed in the films, the higher c value occurring near the substrate interface and arising from cation disorder and oxygen nonstoichiometry, and the lower one near the film surface arising from cation disorder alone. BaCuO2 precipitates were present near the surface of the films, indicative of partial melting during growth. The amount of BaCuO2 increased with growth temperature. Epitaxial Y2O3 also formed in increasing amounts suggestive of a different partial melting reaction in the films compared to bulk YBCO, where Y2BaCuO5 coexists with liquid. Around 1 MA/cm2 values of high critical current density (Jc) were observed in the films, and the in-field Jc improved with growth temperature despite the fact that the superconducting transition width increased significantly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.