Abstract

Typical thermal barrier coating (TBC) systems consist of a nickel-base superalloy substrate coated with a MCrAlY or diffusion aluminide bond coat, onto which is deposited a yttria-stabilized zirconia (YSZ) TBC. The bond coats are usually deposited via diffusion aluminizing processes or low pressure plasma spray processes (LPPS). The YSZ can be deposited by air plasma spraying (APS) or electron beam physical vapor deposition (EBPVD). A layer of thermally-grown oxide (TGO), which is usually alumina, forms between the bond coat and YSZ during TBC deposition and subsequent high-temperature exposure. The conventional wisdom is that APS coatings tend to fail in the YSZ and that EBPVD coatings tend to fail at the interface between the TGO and bond coat. However, current research has shown that the situation is much more complex and that the actual fracture path can be a function of the type of bond coat, the type of high-temperature exposure, and coating process parameters. This paper describes the results of a study of the failure of state-of-the-art EBPVD TBCs deposited on NiCoCrAlY and platinum-modified diffusion aluminide bond coats. The failure times and fracture morphology are described as a function of bond coat type. The failure times were found to be a strong function of temperature for both bond coats. The failure for NiCoCrAlY bond coats was found to initiate at defects in the coating, particularly at the TGO/YSZ interface, but the fracture propagated primarily along the TGO–bond coat interface. The failure times and morphologies for platinum-modified diffusion aluminide bond coats depended strongly on bond coat surface preparation. The mechanisms for failure of the two bond coats are described. Also, the effects of modifications to the bond coats and variations in processing parameters on these mechanisms are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.