Abstract
The microstructural characterization of thermal-sprayed Ni-based self-fluxing alloy (Metco-16C®) after laser-assisted homogenization treatment was performed. To this end, a high-power diode laser system was used. This supported the real-time control of the target homogenization temperature at the substrate surface. Non-homogeneities of the macrosegregation of certain elements (C and Cu) and the local concentration of Cr-based carbides and borides in certain regions in the as-sprayed state could be enhanced with the application of homogenization. After homogenization at 1423 K, the hardness of the thermal-sprayed layer was found to have increased by 1280 HV from the as-sprayed state (750 HV). At this homogenization temperature, the microstructure of the thermal-sprayed layer consisted of a lamellar structuring of the matrix phase (austenite and Ni3Si) with fine (<5 μm) carbides and borides (the rod-like phase of Cr5B3, the lumpy phase of M23C6, and the extra-fine phase of M7C3). Despite the formation of several kinds of carbides and borides during homogenization at 1473 K, the lowest hardness level was found to be less than that of the as-sprayed state, because of the liquid-state homogenization treatment without formation of lamellar structuring between austenite and Ni3Si.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.